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J. Phys. A: Math. Gen. 16 (1983) 3271-3290. Printed in Great Britain 

Algebraic quantisation with indefinite metric 

P Broadbridge: 
Department of Mathematical Physics, University of Adelaide, GPO Box 498, Adelaide, 
South Australia 5001 

Received 9 December 1982, in final form 20 May 1983 

Abstract. A real symplectic flow may be viewed as being pseudo-unitary, provided there 
exists a symplectic complex structure J which commutes with it. This paper determines 
the class of dynamical systems for which J exists. Such systems may be quantised 
algebraically but the state space may have indefinite metric. This procedure admits a 
larger class of classical systems than does Segal's algebraic quantisation but there are 
problems in interpreting the indefinite metric and these are listed and discussed. 

1. Introduction 

The indefinite metric became familiar in quantum field theory after it had been 
demonstrated by Gupta and independently by Bleuler that a covariant formulation 
of quantum electrodynamics necessitated the introduction of a negative metric for the 
unphysical longitudinal and time-like photons (e.g. Mandl 1959). There is now a 
general result, due to Strocchi (1978), that any covariant locally gauge invariant field 
must be represented on an indefinite inner product space. The indefinite metric also 
arises when a covariant wave equation, with minimal coupling to an external field, 
becomes unstable. In such circumstances, it is unavoidable that formal mode space 
should become indefinite (Krajcik and Nieto 1976, Gupta 1978, Barua and Gupta 
1978, Broadbridge 1981). A third circumstance which leads to the indefinite metric 
is the quantisation of a non-local field. Non-local fields are still considered as models 
for strong interactions, either to confine the sub-hadronic particles (e.g. d'Emilio and 
Mintchev 1979) or to take account of their spatial extension (Broadbridge 1981 and 
references therein). 

The emergence of the indefinite metric can already be accounted for at the 
foundation level of quantum mechanics, in the theory of simple quadratic Hamil- 
tonians. Just as the free Klein-Gordon field can be analysed as a collection of 
independent harmonic oscillators, fields with non-local action are made up of indecom- 
posable finite linear subsystems of the most general type, as shown by Pais and 
Uhlenbeck (1950). Such a system has a general quadratic Hamiltonian 

with zT = (4, p )  E R 2 N  and A =AT, a real symmetric 2N x 2N matrix. The Hamilton 
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equations may then be solved to yield 

z ( t  ) = exp( -Gk)z  (O), 

with 

The single-parameter group C(t )  = e x p ( - G k )  is a subgroup of the real symplectic 
group Sp(2N, R ) ,  which preserves the symplectic form B ( z ,  z’) = (2, Gz‘). The gen- 
erator -Gf i  belongs to the Lie algebra sp(2N, R ) .  From (1.2), z ( t )  may be expressed 
as an exponential polynomial 

N,-1 

(1.3) I IS f 
z , ( t )  = 1 1 b,,k,it e +complex conjugate. 

k I = O  

In (1.3) the k-summation accounts for all elementary divisors (s - s k ) N k  of -iGH -d. 
Since z ( t )  is determined by its initial value, there are 2 N  independent parameters 
among the coefficients b,,k,r. To quantise (1.3) in  the Heisenberg scheme, z , ( l )  is 
replaced by a time-dependent operator Z,(t), while the coefficients 6 ,  b* become 
constant operators B,  B ‘. This straightforward substitution follows for the quadratic 
Hamiltonians, since in this case the Heisenberg equations have the same form as the 
classical Hamilton equations. For a collection of harmonic oscillators, sk is real 
non-zero and Nk = 1. In this case, the canonical commutation relations (CCR) 

[Z , ( t ) ,  Z,(t)l= -iGWv (1 9 4 )  

LB,,  B 1 = 8 , k I  and [B,, Bkl= 0% (1.5) 

are equivalent to the boson commutation relations (BCR) 

If we then assume the existence of a cyclic normalised vacuum state 4o such that 
B, 4o = 0, formal single-particle space has its familiar positive definite metric 
( ~ ; 4 ~ ,  B : ~ O )  = 8 , k .  However, when some of the frequencies sk are complex or some 
of the multiplicities Nk exceed one, the dynamical system is unstable and cannot be 
transformed linearly to a collection of independent harmonic oscillators. In all such 
cases, the CCR are incompatible with the BCR. If we choose to retain the BCR, then 
we obtain acausal commutation relations among the canonical operators. For example, 
such relations result from the imaginary mass Klein-Gordon system and this has been 
used to model a tachyon field (Sudarshan and Dhar 1968, Arons and Sudarshan 1968). 
In fact, the classical imaginary mass Klein-Gordon system, based on the equation 

0 = ( a : - v 2 - - m 2 ) ( X ) ,  

may be analysed as a collection of independent harmonic oscillators together with a 
set of repulsive (pure imaginary frequency) systems. For a charged repulsive oscillator, 

H=PAP-Q’Q, 

with 

Q, Q = 2-1’2(Q1 iQ2)  and P, P’ = 2-1’2(~1  kip2), 
we obtain, after assuming (1.5), (Broadbridge 1982) 

[a,, Q,] = -2i cosh 2t. 



Algebraic quantisation with indefinite metric 3273 

Commutators of the type (1.6) are the finite-dimensional prototypes of acausal non- 
vanishing commutators among field operators cp (x), cp(y) with (x - y )  space-like. 
Schroer (1971) quantised this system using the other approach, namely to assume 
the CCR among Qi and Pi and to deduce the commutation relations among mode 
operators Bi and BT. There is now a general result that for any unstable linear system, 
this approach must lead to an indefinite metric for the single-mode space spanned by 
Bi40 (Broadbridge 1981). Hence, we see why the indefinite metric arises in the 
external field problem and also in non-local field theory. 

Of course, a quadratic quantum mechanical Hamiltonian can always be expressed 
as a quadratic boson Hamiltonian, for example by defining annihilation operators 
bi = 2-1’2(Qi + iPi) and creation operators b;. However, these boson construction 
operators may not be interpreted as mode construction operators and there may not 
be a Bogoliubov transformation which transforms the Hamiltonian to a sum of mutually 
commuting quasi-particle number operators (Broadbridge 1979). 

In the method of algebraic quantisation due to Segal (1963), classical real phase 
space A is treated as complex single-particle Hilbert space, provided there can be 
found a suitable complex structure J on A which allows the dynamics C(t)  to be 
viewed as unitary. From single-particle space, one constructs the Fock representation 
of the CCR by the method of Cook (1953). This may be viewed as the GNS cyclic 
representation constructed from the unique vacuum expectation functional on a 
C*-algebra of observables (Segal 1963). However, it was shown (Broadbridge and 
Hurst 1981b, Broadbridge 1983) that for unstable classical dynamics C(t) ,  no such 
suitable complex structure exists. This is the algebraic counterpart of the abovemen- 
tioned no-go theorem, for heuristic quantisation of unstable modes. Therefore, having 
now discussed the necessity of the indefinite metric, we ask whether algebraic quantisa- 
tion can be applied to unstable dynamical systems by relaxing the positivity require- 
ment. The main purpose of this paper is to find the most general quadratic Hamiltonian 
for which the corresponding dynamical group may be considered pseudo-unitary on 
an indefinite inner product space. We not only achieve this but also produce a 
pseudo-unitarising complex structure explicitly, whenever one exists. The assumption 
of pseudo-unitary single-particle dynamics was the starting point of the rigorous 
Cook-type construction of Fock space with indefinite metric, previously reported by 
Mintchev (1980). The present paper, along with Mintchev’s, constitutes an algebraic 
quantisation with indefinite metric. There remain serious problems in the physical 
interpretation of the indefinite metric and these are discussed in S; 5 ,  along with some 
possible resolutions which are still being investigated by other researchers. 

2. Some necessary conditions for pseudo-unitarisability 

In the rigorous method of algebraic quantisation due to Segal (1963), C ( t )  is treated 
as a one-parameter group of complex unitary transformations, which preserve the 
complex inner product 

(2.1) (2, z’jl = -B(z ,  Jz ’ )  -iB(z, z ’ ) ,  

with J a real linear transformation of R Z N  satisfying 

(J is a complex structure), (2.2a) 

JTGJ = G (J is symplectic, since ( , must be a J-sesquilinear form), (2.26) 

2 J =-I 



3274 P Broadbridge 

-GJ > 0 (positivity of metric ( , . ) I ) ,  (2.2c) 

[J ,  G f i ]  = 0 (since C ( t )  must be unitary). (2.2d) 

Provided that such a complex structure J exists, the complex inner product space 
5%'"' = ( R Z N ,  J,  ( , may be viewed as single-particle Hilbert space. In this paper, 
we shall neglect the positivity condition ( 2 . 2 ~ ) .  

It has been proven by Tolimieri (1978) and Rossi (1981) that for each signature 
of -GJ, there is a separate unique conjugacy class containing J.  We proved this 
independently (Broadbridge and Hurst 1981b), using the theory of symplectic canoni- 
cal forms (Broadbridge 1979). 

Proposition 2.3. Every symplectic complex structure J lies in the same Sp(2N, R) 
conjugacy class as a matrix of the form 

S = f G ' 2 ' & f G ' 2 ' .  . . & f G ' * ' .  

Here, the superscript in G'2' denotes the order of the matrix and denotes the 
symplectic direct sum, which is obtained from the ordinary direct sum by a reordering 
of the basis 

( 4 1 , p l , q 2 , p 2 , . . . . , 4 m , p m ) ~ ( 4 1 , . . . . , 4 m , P l , . . . . , p m ) .  

This reordering ensures that 

The proof of proposition 2.3 may be obtained from Broadbridge and Hurst (1981b). 

A change of order in the symplectic basis then ensures that the components +G(') 
appear first, followed by a string of components -G'*'. As a result, there exists a 
symplectic transformation C such that 

If a symplectic transformation C commutes with G ( a ,  6)  then C is unitary on the 
complex inner product space 

and 
a"'= ( R z N ,  J,  ( . , * )1) where J = G ( a ,  b)  

( .  , = -( e ,  GJ . ) - i ( .  , G ), ( 2 . 5 )  
-GJ = -GG(a, b )  = diag[I'"', -I'b', I@', -I'b']. (2.6) 

With J = G ( a ,  b), the first N basis vectors of the real space span the whole complex 
space x"), since 

forj= 1,. . . , a ,  
fo r j  = a  + l , .  . . , N. 

e N + ,  = { Jei 
-Jej (2.7) 
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In the general case that J is conjugate to G(a ,  6 ) ,  

C-'JC = G(u, b )  and CTGC = G 

+C'(-GJ)C = -GG(a, 6). 

Therefore, if -GJ has signature ( 2 4  2 b ) ,  J is conjugate to G(u,  6 )  and by (2.5)-(2.9), 
the group of real symplectic transformstions which commute with J is isomorphic to 
the group U(a, 6 )  which preserves a complex inner product ( , j l  of signature (a, 6 ) .  

Definition 2.10. A one-parameter symplectic group C ( t )  = exp(-Gfit) has a pseudo- 
unitarising complex structure J if J is a symplectic complex structure and J commutes 
with Gi?. 

Proposition 2.11. C ( t )  = exp(-Gfit) has a pseudo-unitarising complex structure J if 
and only if for some C E Sp(2N, R) ,  

T with A = A  , L = -LT and K = diag[-I'"', I"'] with a + b = N, 

Proof. Since J is a symplectic complex structure, by (2.3), there exists C E Sp(2N, R )  
such that C ' J C  = G(u,  6 )  = (-$ f), with K defined as above. Now 

[J, Gi?] = Oe[CG(u,  6)C-', Gi?] = 0 

e [ G ( u ,  b ) ,  C-'G&] = 0 

e [ G ( a ,  6 ) ,  GCTfiC] = 0 

e [ G ( u ,  b ) ,  CTi?C] = 0 (since [G(u, b ) ,  GI = 0). 
(2.12) 

The symmetric matrix C'kC must have the structure (3  E) with A - A T  = F - FT = 0. 
Then (2.12) is equivalent to 

( 2 . 1 3 ~ )  -BK = KBT( = (BK)T)  

and 

AK = KF. (2.136) 

Since K is an involution, F = KAK and B = LK, where L = BK is skew symmetric, 
by ( 2 . 1 3 ~ ) .  

Conversely, if for some C E Sp(2N, R ) ,  C'fiC has the form given in proposition 
2.11, 

[GCTfiC, G(u ,  b ) ]  = 0 

e [ G i ? ,  CG(u, b)C- ']  = 0 

@CG(u, 6)C-l is a pseudo-unitarising complex structure for exp(-G&). 

Definition 2.14. The canonical orbit containing the real symmetric matrix fi is defined 
to be the set {CTi?C; C E Sp(2N, R)}. 
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The canonical orbits are in  one-to-one correspondence with the conjugacy classes 
of the Lie algebra sp(2N, R) ,  since with C E Sp(2N, R ) ,  C'HC =HleCc- 'GHC = 
GHl. From proposition 2.11, existence of J is a property which is determined by the 
canonical orbit of g. If J is a symplectic complex structure which commutes with 
GH and if f?, = C'fiC, with C E Sp(2N, R ) ,  then it is easy to verify that exp(-Gfilt) 
has a pseudo-unitarising complex structure 

J1= C ' J C .  (2.15) 

To construct a solution J in the most general case, we need only consider a 
canonical form belonging to each canonical orbit and then apply (2.15). The full set 
of canonical forms was first given by Williamson (1936). In the notation which we 
have used repeatedly (e.g. Broadbridge 1979), the indecomposable canonical forms 
are denoted KjZk' Lp, s,). Associated invariants include the elementary divisors (s f sf)k 
for the pencil ( iGH -SI). p = *1 distinguishes two possible distinct orbits when j = 4, 
5 or 6, in which cases the frequencies s, are real. When j = 4 or 5 ,  p is determined 
by the signature of fi. For j = 6 ,  the case of real freyuenciet and Jordan chains of 
even length k ,  p is determined by the signature of HN, -GHN being the nilpotent 
part in the Jordan decomposition of -Gf i  (Cushman 1973). In the other three cases, 
j = 1, 2 or 3, the elementary divisors determine the canonical orbit. 

Even after allowing R''' to have indefinite metric, it soon becomes apparent that 
a pseudo-unitarising complex structure does not always exist. For example, in one 
degree of freedom every symplectic complex structure J is conjugate to G(1,O) = 
(7 -A) = G"' or to G(0, 1) = -G'2'. Therefore, it is clear, from the argument of 
Gallone and Sparzani (1979), that if [J ,  G H ]  = 0 ,  I? must either be trivial (I? = 0) or 
must belong to the harmonic oscillator class. Neither the single repulsive oscillator 
(fi = (A nor the single free particle (A = (g y ) )  admit pseudo-unitarisation. In 
fact, we shall prove that each elementary divisor (s - associated with an imaginary 
or zero frequency is, must occur an even number of times before the symplectic 
dynamics in  N degrees of freedom can be pseudo-unitarised. 

Proposition 2.16. Suppose that a pseudo-unitarising complex structure exists for 
C ( t )  = exp(-Gfir). Then, for any eigenvalue is, of iGf i  with s, E R ,  each elementary 
divisor (s - for fixed N,, must occur an even number of times. 

Proof. Let (s-is,)Nl, with sfc  R, be an elementary divisor of iGfi-sZ. Since the 
elementary divisors are invariant under symplectic transformations, they are also the 
elementary divisors of iGfio-sZ, with fi, the canonical form of (2.11). By the Jordan 
canonical form theorem, there exists a basis of root vectors ej,r satisfying 

if 1 = N,, 
if 1 < N,, 

(a) ( iGk0  - isJ)ej,[ = 

Let r be the antilinear operator on C Z N  defined by 

(2.17) 



Algebraic quantisation with indefinite metric 3277 

with U *  the complex conjugate of U. Then 

if 1 = N,, 
if L < N,. I '-re,, , + 

(iGfio - is,l)Te,,, = 

Therefore, the vectors (-l)'re,,,, 1 = 1 , .  . , , Ni, constitute another Jordan basis corres- 
ponding to the elementary divisor (s - Furthermore, {ej,,}t=l, . , , N ~ U { ~ ~ ~ J } ~ = ~ , .  , N ~  

is a set of 2N, linearly independent vectors, since if 
N ,  

O =  alel+P,Te, (2.18) 

(temporarily neglecting the suffix j ) ,  by applying (iGE?, -isfI)Nl-l to each side of 
(2.18), we obtain 

1=1 

N 0 = (Y leNI - (- 1) p re, 

If p1 # 0, then this implies 

reNl  = aeNl with cy = (-l)Ntrl//31. (2.19) 

The vector eN, in  C Z N  may be expressed as (:). Then (2.19) can be re-expressed as 

KO* = au and -Ku * = CYU 3 U* = ~ K u  (since K 2  = I )  

and 

U = -a*Ku*Ju* = - la)2u* 

* U  = o  
Ju=O and U =o .  

Since eN, is non-null, this is a contradiction and so we deduce a = p1 = 0. Assuming 
a1 = P I  = 0, applying (iGl?o-isfI)Nr-2 to each side of (2.18), we similarly obtain 
c y 2  = P 2  = 0. Continuing this recursive attack, we can show a[  = p1 = 0 for all 1. There- 
fore, the vectors {el} and {re,} are linearly independent. 

Let us define V, = span{e,,[, re,,[; I = 1,  . . . , N,}  and define the skew-orthogonal 
complement 

V ;  = { w E C Z N ; B ( w , u ) = O f o r a l l o E  v,}. 
It is not difficult to see that V: is not only iGfi-invariant but also r-invariant. 
Therefore, if isk is another pure imaginary frequency, we may similarly extract a 
subspace vk = s p a ~ ~ { e ~ ~ ,  Tek,,; 1 = 1, .  . . , Nk}from V:,andonthissubspace,(iGfio-sI) 
has a pair of elementary divisors (s -isk)Nk. We may continue to extract pairs of 
Jordan bases until all imaginary frequencies have been accounted for. This completes 
the proof of proposition 2.16. 

When looking for the full set of Hamiltonians for which J exists, it is natural to 
enquire whether the condition given in proposition 2.16 is sufficient as well as 
necessary. The following result will help to produce counterexamples to this con- 
jecture. 

Proposition 2.20. Suppose that a pseudo-unitarising complex structure exists for 
C( t )  = exp(-Gl?r). Then sig fi = (0,O) (modulo 2). 



3278 P Broadbridge 

Proof. Suppose that a pseudo-unitarising complex structure exists for C ( t )  = 
exp(-Gfif). Then, by roposition 2.11, there exists C E Sp(2N, R) such that C’fiC = 
( - K ~  KAK) with A = A  , L = -LT and K = diag[-I(“’, I“’] with a + b = N :  A LK .p 

Since (i k) is an involution, fi must have the same signature as (-% i). This implies 
that fi has the same signature as 

I ) (with P = 2-’” ( I) = Pt-’). A L  
-L A A+iL -iI iI 

Therefore, 

sig fi = sig(A - iL) + sig(A + iL) = sig(A + iL)* + sig(A + iL) 
= 2 sig(A + iL) (since A + iL is Hermitian). 

Hence, both the positive and negative eigenspaces of fi must be even dimensional. 

As an application of proposition 2.20, we recall that kiZk’ has signature (k - 1, k - 
1). Therefore, if fi belongs to the same canonical class as k;’”’, with k even, 
exp(-Gfir) cannot be pseudo-unitarised, even though the elementary divisors of 
iGfi -SI occur in pairs s k ,  s k .  This provides a counterexample for the converse of 
(2.16). 

As another example, let fi =kL2k’(pl)&k!,2k)(p2). iGf i - s I  has a pair of 
elementarydivisorss , s but s ig f i  may be varied byvaryingp,( = *l) andp2(= *l). 
Since ke rk iZk’  (pl)  is one dimensional, sigkizk’(p1) = (0, 1) or ( 1 , O )  (modulo 2). We 
recall from Broadbridge (1979) that kkZk’(-p1) may be obtained from ( p l )  by 

sigKizk’(-p1) = (1, l ) - s igK~zk’ (p l )  (modulo 2). This implies that if p2 = -pl, 

2 k  2 k  

a sigfrature-reversing transfolrmation K 4  “ ( 2 k )  ( -PI)  = - (i -9) kiZk’ ( p l ) ( i  !?I). Therefore, 

“ ( 2 k )  sig(kkZk’ (pl) a K 4  

Therefore, by proposition 2.20, if fi belongs to the same canonical class as 
kiZk) (PI) gLzk’ ( p d ,  exp(-Gfir) cannot be pseudo-unitarised unless p1 = p2 .  It is 
not good enough that the elementary divisors occur in pairs s Z k ,  s Z k .  The other 
invariants p1 and p2 on the associated principal subspaces must also be equal. 

(pz ) )  = (1, 1) (modulo 2). 

3. Appropriate complex structure 

From 3: 2, a canonical form containing an odd number of identical components 
k : 2 k ’ ( u i )  or an odd number of identical components kf”(p) or kYk) indicates that 
no appropriate complex structure J exists. In all other cases, the dynamics can be 
pseudo-unitarised, which we shall demonstrate by constructing J explicitly. 

We shall begin with the canonical system possessing complex frequencies, which 
leads to some c!nonical systems with pure imaginary or zero frequencies as special 
cases. On a GH-invariant subspace on which fi is K&4k’ ( b  +ai ) ,  one solution for J 
in (2.2a, b, d )  is 

(3.1) J = *diag[G”’, G”’, . . . , G”’]. 
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The case A = i r k )  ( b  +a i ) ,  tor which iGA -SI has elementary divisors (s + b + a i)k, 
(s + b -a  i)k, (s - b +ai)& and (s - b - a  i)k, reduces to the canonical class of I? = 
k ( 2 k )  1 k$4k’ (ai) reduces 
directly to K$4k’ when a = 0. Therefore, the latter examples admit a complex 
structure given in (3.1). Now we shall consider the special case I? =k$2k’ with k 
odd. In the simplest case, k = 1, k;” = (: :) and -Gki2’ commutes with every 
symplectic complex structure. With k = 3, the conditions J = -I, J T G J  = G and 
[J, GKi6’] = 0 yield a general solution for the 6 x 6 matrix J: 

a k)Zk), when b = 0. The canonical form k\4k’ (a i )  

O a O O S O  
f f  O P  Y 

- * 
‘ 1 0 - 1  
’ 0 1  0 
* - l o  0 

J = .  . . .  . 
0 0 1 .  
0 - 1 0 ,  
1 0 1 .  - 

0 O E - a  0 0 
0 O a - S  0 

J = .  

- 
1 0 -  

-1 0 1 
. -1  

-1 . 
. 1 0 .  
. 0 1  
. -1 

. . . .  
1 .  

-1 0 . 
. 0 1 .  
. -1 

-1 0 -1 
- 1  0 1 
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For the case fi = (p) K a k )  ( p ) ,  one solution is 

J = *diag[Gi'2k', G'2k'] .  (3.4) 

For fi =k\4k+2)(p, 6 )  and fi =Kk4k'(p, b ) ,  we may obtain a solution by first 
transforming fi to the canonical form of proposition 2.11. Our results are that with 
fi = k:4k+2) ( p ,  b ) ,  one solution is 

J =  

b 
-b 

b 
. -b 

. . .  . .  * .  
b-' . 

-b-' 

b -' 
and with fi = 2;") (p ,  b ) ,  one solution is 

0 -b 
6-' 0 

0 -b 
b-' 0 

0 -b-' 
b o  

(3.5) 

Having reduced an arbitrary real symmetric fi to a symplectic direct sum of 
canonical matrices K:2k' ,  and provided that the illegal combinations mentioned at the 
beginning of this section do not occur, J may be taken to be the symplectic direct 
sum of the solutions, listed above, for each contributing GI?-invariant subspace. For 
a solution J when fi is not canonical, we need only apply (2.15). 

4. Fock space with indefinite metric 

Given a complex (single-particle) Hilbert space Rill, the rigorous construction of both 
Fock space 9(%'""') over %'(I) and the natural creation and annihilation operators of 
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g(%"') were devised by Cook (1953). The Segal procedure for quantisation of linear 
systems, which we have now fully investigated, involves finding a complex structure 
J on the classical real linear symplectic space Jll = (R2N,  B )  so that the classical 
symplectic dynamics C ( t )  is unitary with respect to the associated J-sesquilinear form 
( . , . The complex space (A, J, ( 1 , ) 1 )  then becomes %(') in the Cook construction. 
Mintchev (1980) has extended the Cook construction to the case that %") is an 
indefinite inner product space. The results which we have presented so far in this 
section may be regarded as a rigorous construction of a complex indefinite inner 
product space %") with pseudo-unitary dynamics, which was the starting point of 
Mintchev's work. Given an indefinite inner product (4, (I,)1 = (4, q(I,), with q a self- 
adjoint contraction on complex Hilbert space (%( . , * )), define %(" = (%, ( * , . j l) .  
Fock space g(%"') with indefinite inner product ( * , - ) is constructed as in the usual 
Cook construction: 

where %""=C and the space 2'"' includes all symmetrised tensor products 
S,q51 0. . . ,634" of n vectors of %'". Here, S,  is the symmetrisation operator 

1 
n ! u E ~ ,  

s, = - c ff, 

where P, is the symmetric group of permutations of n symbols. Annihilation operators 
are defined by 

a (4 ISn4 1 o . G o 4" = n 1/2sfl (4, 4 i ) i 4 2  o . . . o 4,, for n 2 1 

and 

a (C$)(P') = (0). (4.2) 

The pseudo-adjoint ~ ' ( 4 )  of a ( 4 )  behaves like a creation operator 

u+(4 , ,+ t )Sn4tG. .  . ~ 4 , ,  =(n+1)"2S,+1410. .  .04,04,,+1. (4.3) 

@((I,) = 2-'l2(a ((I,) + U+(( I , ) ) .  

Field operators @($) are defined by 

(4.4) 

We write the finite-particle subspace as 

go = {4 E S(%(')); 3 n  E 2, 4 = (4"', 4('), . . . . , d'", . . .) with c $ ( ~ )  = 0 for all m >n} .  

Theorem 4.5. (Mintchev 1980) 
(a) @(4)  is closable for all q5 E %('). 
(b) go is a set of analytic vectors for @(4), for all q5 E %'". 
(c) If {dk} c %"' and s- lim 4 k  = 4, then 

k-m 

s- lim @(dk)(I, = @(4)(I, for all (I, E go. 
k +cc 

(d) The vacuum vector $0 is cyclic with respect to (O(4) ;  4 E X'l ) } .  

(e) For all x E go and 4, (I, E %"), [@(4) ,  @((I,)k = i Im(c$,(I,)~x and 
[a  (4 ) ,  a '((I,)lx = ( 4 9 c L ) l X .  
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Since the operators @($) satisfy the CCR on go, which is a subspace of analytic vectors 
for @($), just as in the case of positive metric, the first similarity rule of Friedrichs 
(1953) would be valid, so that 

(4.6) - ] ( I f  +ah + 
a + ( g l ( t ) ) .  . . a+ i&( t ) )vh=e  a ( t l (0 ) ) .  . . a ’ ( B n ( O ) ) $ o ,  

where 
2 N  

H = iZ’fiZ, Z, = 1 G, ,@(e , )  (Z, obey the CCRj  (4.7) 
U = l  

and in (4.6) it is assumed that Hq$o = with cy E R .  This assumption is valid when 
I? is reduced to the canonical form f i 0  of proposition ( 2 . 9 )  a n d J  = G ( a ,  b ) .  In this case, 

Since a ( J 6 )  = -ia(() and J = G ( a ,  b ) ,  we have 

a (Jei)  = -ia ( e i )  
a (ej+N) = ( a ( -Jei) = ia ( e i )  

if 1 ~j S a ,  
i f a + l s j < N .  (4.9) 

Combining (4.9) with (4.4), we obtain 

@ ( e , )  = 2 - ” 2 [ a ( e , ) + a + ( e , ) ] ,  

@ ( e , + N )  = 2-’”[ipja(e,) -ipju+(e,)I, for all j s N .  (4.10) 

We shall write (4.10), in a condensed notation, as 

@ = P ’ a  

with 

(4.11) 

Substituting (4.10) into (4.8), we obtain 
1 T A  H$O = p3 Y@$O = $D+?@$o 

= ~ ( P ’ a ) + Y ( P ’ a ) q $ O  

(since = aW on go) 

= ;a +pt+ ppIaG0 (where a+ -- (a T, . . . , cy;, cy1, . . . , a N ) ) .  
(4.12) 

Now 

(4.13) 
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Therefore, from (4.12), 

N 

= a40 where a = -4 1 P ~ A , ~  = -iTr(KA). (4.14) 

It will become evident that complex indefinite inner product space 2"' is a rigorous 
version of the heuristic single-mode space, which, by theorem 4.30 of Broadbridge 
(1981), must have indefinite inner product when the classical dynamics is unstable. 
To clarify this point, we shall continue to consider a classical system with finite degrees 
of freedom. Proposition 2.11 then allows us to assume f i = f i o  and G =G(a,.b), 
which can always be achieved by a symplectic transformation, given that a pseudo- 
unitarising complex structure exists. The CCR may then be expressed 

J = 1  

(4.15) 

(Here and in the following ai is an abbreviation for a ( e i ) . )  

#I = X E 1  /3iaf$o. Then 
To find the single-mode eigenstates for H, suppose that H#I = wq5, with w E C and 

r.s = 1 r = l  

e - K ( A  + iL)p = (w -a)@ (since the single-mode states a :rL0 

are linearly independent). (4.16) 

That is, the vector p with N components pi is an eigenvector of - K ( A  +iL) corres- 
ponding to eigenvalue w -a. To relate these values to the classical frequencies, notice 
that 

which is similar to 

Therefore, the classical frequencies include both the single-mode energies w -a ,  
which are eigenvalues of - K ( A  +iL), and also the values -(w -a)*,  which are eigen- 
values of K ( A  - iL). In the most familiar case, fi is positive definite, and by a theorem 
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of Whittaker (1959), fi can be reduced to diag[sl,. . . , sN,  sl, . . . , s N ] .  This conforms 
to the canonical matrix f i 0  of proposition 2.11. We may take A = diag[sl, . . . , sN], 
B = 0 and K = diag[-I("', I 'b ' ] ,  with a arbitrary. The choice a, b # N and J = G(a ,  b )  
leads to an indefinite inner product space %"'I. However, it is customary to construct 
a positive definite inner product space whenever possible. This choice, K = -I, leads 
to a set of single-particle energies which includes the eigenvalues si of - K ( A  +iL) 
but not the negative eigenvalues -si of iGfi. 

For the purposes of this section, we are most interested in the situation when 3Y"' 
may have an indefinite inner product but may not have a definite inner product. For 
example, consider the case that iGf i  has simple complex eigenvalues * b  *ai. fi 
belongs to the same canonical orbit as 

r 0 0 -a - 6 1  

By applying the symplectic transformation 

11 0 0 -11 

kL4) transforms to 

with 

A = ( - , "  - ; ) = A T  and K = ( - i  y )  
Then according to (4.16), relative to the vacuum, the single-mode energies are the 
eigenvalues of -KA, namely -b *ai .  The most general single-mode state correspond- 
ing to E = - b + a i  is 

$E = r(a ;$o + ia;$o) with y E C, ( 4 . 1 7 ~ )  

The most general single-mode state corresponding to E * = -b -ai is 

From the commutation relations (4.5e), 

From our discussion of heuristic mode space (Broadbridge 1981), we know that 
the indefinite metric blossoms not only when the classical frequencies are complex, 
but also when real classical frequencies are non-simple. For example, if fi belongs 
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to the same canonical orbit as 

r b - 2  0 0 11 

1 1  0 0 OJ 

then fi also belongs to the same canonical orbit as 

- 1  0 
K = (  0 1 ) .  

(4 .19)  

f i 0  = CTKr'C, where 

l o  
Then, according to (4 .16 ) ,  the sole eigenvalue b of -KA is the only single-mode 
energy and the most general single-mode stationary state is 

$b =Y(a:$O+a;$O) with y E c. (4 .20 )  

We can find another single-mode state $ D ,  which is a principal vector for H -a  and 
satisfies 

( 4 . 2 1 ~ )  ( H  --Cy - b  )$D = $!fb 

(4 .216)  

From (4 .14)  and (4 .19 ) ,  the vacuum energy LY is equal to b. One solution for (4 .21)  is 

$0 = y b ( a ; ' $ o - d $ o ) .  (4 .22 )  

From the commutation relations (4.5e). 

( $ b ,  $ b )  = 0, ($0, $D) = 0, ($! f~,  $ b )  = 2 1 ~  12b. 

Because of ( 4 . 2 1 ~ )  and (4.2361, $D is often called the 'dipole ghost'. 

(4 .23a ,  b, c )  

5. Interpretability of indefinite metric 

We have seen i n  S; 4 how a single-mode space with indefinite metric can be constructed 
rigorously by extending the mathematics of algebraic quantisation. The physical 
interpretation of the indefinite metric is a separate problem. This interpretation 
problem is no different from that which has prevailed over the last two decades, in 
the context of heuristic quantisation (Nagy 1966). It is generally agreed (e.g. Ascoli 
and Minardi 1958) that if the indefinite metric is to be given a probabilistic interpreta- 
tion, the dynamically invariant single-mode space 2"' must be decomposable into a 
direct sum Z"' = Zp 8 2", with each element 4, of 2, having a non-negative norm 
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( + p , + p ) l .  RP represents the physical states of the system and Zn represents the 
non-physical states. Mathematically, there are many ways in which an indefinite inner 
product space can be decomposed in this way. For example, if Xi" is two dimensional, 
(41,41)1= 1, (41,42)1=0 and (42, Zp could be taken to be all scalar 
multiples of G1, but could just as well be taken to be all scalar multiples of G1 +$$z. 
Since (G1 + $tJ2, +b1 + $$Z)I = j, Zp would have positive metric after either choice. In 
practice, 2Yp is determined by the physics of the system which is represented. For 
example, in the Gupta-Bleuler covariant formulation of quantum electrodynamics, 
Xp includes the states representing transversely polarised photons, while Xn includes 
any state involving longitudinal or time-like photons. According to Ascoli and Minardi 
(1958), the minimal requirement for an indefinite inner product R"', with pseudo- 
unitary Hamiltonian dynamics, to have a probabilistic interpretation, is that if 4 (0) 
belongs to Xp, then for all t ,  

$ ( t )  = e-Hr4(o) = 4p(t) +4n(t), (5.1) 

4p.n E 2Yp.n and ($p(f ) ,  ( C l n ( t ) ) l =  ( + n ( t ) ,  $ n ( t ) ) l =  0. (5.2) 

with 

Equation (5.1) ensures that 4, , ( f )  in  no way contributes to the norm of $ ( t ) .  However, 
i t  can easily be checked that these conditions cannot be met either for the case of 
complex frequencies or for the dipole ghost which we have just examined. In  the 
former case, Xe"' is two dimensional, so that 2, must be one dimensional, spanned 
by a single state vector t . /~~  = +&bE*, for some [,[ E C. Assuming @(O) = 41, 

with E = b +ai .  + ( t )  = 6 e-iEf4E + I  e-iE*r4E* 

From (5.1), 

4 n ( f )  = 4 ( f ) - ~ 4 1  (5.3) 

0 = (1 + lP12)(41, J I J ~  - 2  Re(cL(4(r), 4 1 ~ .  

(1 -IF I2)(4l, 4l)l = 0. 

since with p E C, is an arbitrary element of XP. The condition (t,bn, $n)l = 0 implies 

(5.4) 

From the condition (4n, $,)I= 0, ( $ ( t ) ,  4111 = ( ~ $ 1 ,  $11, so that (5.4) becomes 

( 5 . 5 )  

Unless every physical state in 2Yp is to have zero norm, ($1, $11~ # 0. Therefore, ( 5 . 5 )  
implies 

/PI = 1. (5.6) 
However, the requirement (4p, (CIJl = 0 implies (ql, qbJl = 0, so that by (5.3), 

(41, 4(t))l -CL(41, $1)1 = 0 

TSP = ( $ 1 9  4(t))I / ($l ,  $1)1 

= Re(2P*y[*[ e-ibr ear +2Py*[5*  e-ibf e-ar)/($l, t,hl)l, (5.7) 
using (4.18). 

This exponential increase in the amplitude of CL is impossible to reconcile with 
11.1 1 = 1. This shows that in the case of simple complex frequencies, the usual require- 
ments of physical interpretability cannot be met. 
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In the dipole ghost situation of (4.21), 2"' is again two dimensional, so that XP 
must consist of scalar multiples of a single state $1 = ( J / b  + l ~ , b ~ .  Recalling that in 
(4.21), a = 6, we have 

H$b = 2b4br e-~Hr4 b - - e  -21bt*~ ,  ( 5 . 8 ~ )  

H$D = $b f 2 b $ ~ ,  (5.8b) 

H"$D = n (2b)"-'$b + ( 2 b ) " 4 ~ ,  

H 2 $ ~  = 4b4b f (2bl2$~,  

D - e $b. 
e-gHr* - -2ibr 

$0 - i l  e-21br 

Assuming $(O)  = i,bl and using ( 5 . 8 ) ,  

* ( t )  = 5 e CLD - i t l  e-21bf$b = $n( l ) ,  
- 2 1 h r ~ ~  + e - 2 ~ b r  

since every element of XP has the form p,bl with CL E C. Therefore 

$n(t) = $(t)-pQ1 = (e-2ibt -it5 e-2ibr$b. (5.9) 

Hence 
* Zibf ( q n ( t ) ,  $p(t)) l  =H(e2jbf  CL*)($^, V + A + C L ~ ~ L  e ($69 ((11)1 

= 21y/*b([*l +&*I + 2 ~ i t l l 1 ~ 1 y ( ~ b  eZibr, 

by (4.23). 
From (4.23), the requirement (I&", GP) = 0 implies 4' = 0. Therefore, an arbitrary 

physical state p,k1 has the form &$b, which has vanishing norm, by ( 4 . 2 3 ~ ) .  Therefore, 
this norm could not be interpretable as a probability. In Heisenberg's treatment of 
the Lee model (Heisenberg 1957), the dipole ghost occurs in two degrees of freedom 
of an interacting field. The Hamiltonian can be unambiguously partitioned into a free 
term and an interaction term. This leads to the definition of an S-operator which 
maps incoming physical states onto outgoing physical states of the same norm. Thus, 
in  the words of Heisenberg, although a physical interpretation of the local behaviour 
in terms of probabilities cannot be given, it is conceivable that such a model might be 
adequate for a scattering experiment. 

In this paper, we have exposed the following disadvantages in allowing the indefinite 
metric to enter algebraic quantisation. 

(a) When the requirement of positive metric is discarded, the unitarising complex 
structure, when it exists, is no longer uniquely determined by the classical dynamics 
and neither is the signature of the metric. 

(b) Any advantage of allowing the metric to be indefinite is limited by the fact 
that certain simple classical systems, such as the free particle in one dimension, still 
cannot be (pseudo)-unitarised. 

(c) When an unstable system can be pseudo-unitarised, the local behaviour cannot 
be interpreted in  terms of probabilities. 
To this list, we may add another problem unearthed by Araki (1982). 

(d) In order to analyse a Hamiltonian H on Fock space with indefinite metric, we 
close H in the topology determined by some chosen constructed positive metric. 
However, the spectrum of the closure depends, in a dramatic way, on the choice 

Despite the above list of difficulties, the physical literature still kindles some hope 
for eventual success in interpretation. One area in which the indefinite metric has 
been encountered is in non-local field theory. For example, consider a scalar field 

of topology. 
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4 ( x )  ( x  belonging to Minkowski space), satisfying the equation 

O2d(X) = 0 (0 is the d’Alembertian wave operator U = a: - A ,  

with A the Laplacian). (5.10) 

This is the equation satisfied by each component of the four-potential for the free 
electromagnetic field in the Landau gauge (Carey and Hurst 1978). To  see that (5.10) 
is grossly non-local, note that it is equivalent to 

@ d ( x )  = i ( x ) ,  (5.11) 

where the non-localised source term j ( x )  is an arbitrary solution of the Klein-Gordon 
equation. The equation (5.1 1) is macroscopically acausal, since its solutions include 
not only the Klein-Gordon field, but also the harmonic field (d’Emilio and Mintchev 
1979), which results in  a Wightman two-point function which is proportional to 
( x  - Y ) ~  = (x - y ) ” ( x  - y ) ” ,  resulting in non-vanishing commutators [ d ( x ) ,  +(y)],  with 
x - y space-like. 

Serious interest has been shown in equation (5.10) as a model of the sub-hadronic 
gluon field (e.g. d’Emilio and Mintchev 1979, Narnhofer and Thirring 1978). A 
fundamental Green function for the operator -A2 is r = (x * x ) ~ ’ ~  

-(8.rr)-’A2r = S ( x ) .  (5.12) 

Therefore, (5.10) is a very simple example of a system with confining static potential 
in  the presence of a point source. Following the programme of heuristic quantisation 
for the system (5.10), Narnhofer and Thirring (1978) found the formal Hamiltonian 
to be 

H H k ,  
k 

with 

d k )  = ( U l ( k ) + ,  a m + ,  U l ( k ) ,  a z ( k ) )  (5.13) H -1 
k - 2a ‘ ( k  ) 9 l ( k  )a ( k  1, 

with 

I ko  - i(4ko)-l (4ko)-l i(4ko)-l 
k o  + i(4ko)-l (4ko)-’ i(4ko)-’ -(4ko)-’ 

-i(4ko)-l (4ko)-’ ko+i(4ko)-l ’ 
- (4k o)-’ k o  - i(4ko)-l (4ko)-l 

(5.14) 

Therefore, according to the scheme of Broadbridge (1979), the corresponding classical 
Hamiltonian is 

with ko  = Ikl. 
In (5.13), the operators a , ( k )  are ordinary boson annihilation operators: 

[ a , ( k ) ,  a , ( k ’ ) ? ]  =s,,s(k - k ’ ) .  

r(2ko)-l k o  o (2ko)-11 
0 0  

H = 42 ( k ) = f i ( k ) z  ( k ) ,  fi(k) = (5.15) 
k 

(2koI-l 0 ko (2koI-l 



Algebraic quantisation with indefinite metric 3289 

This Hamiltonian can be classified according to the scheme of S; 2. With I? =fi(k), 
the elementary divisors of iGf i  -SI are (s f kO)*. Therefore, fi must belong to one 
of the two canonical orbits with canonical form kd”(p), with p = *l. To determine 
p,  we must find the signature of f i N ,  given that -GkN is the nilpotent part in the 
Jordan decomposition of -Gfi. The matrix I?N is given by 

fiN = diag[(2ko)-’, 0, 0, (2ko)-’], (5.16) 

which is verified simply by checking that -GfiN is nilpotent and that -GfiN commutes 
with -GI?. Therefore, fiN is positive semi-definite and p = +1. The determination 
of the canonical orbit of fik immediately leads to further information on the quantum 
mechanical system. The quadratic elementary divisors and real frequencies k o  lead 
to linear instability in the evolution of field operators 4(x, t ) .  Since the elementary 
divisors are not linear, algebraic unitarisation of the classical dynamics is not possible. 
However, there exists a complex structure which enables the classical dynamics to be 
pseudo-unitary, since all frequencies are real and non-vanishing. As pointed out by 
Narnhofer and Thirring, the one parameter group of Bogoliubov transformations 
generated by (5.13) is not unitarily implementable on Fock space. Equivalently, the 
formal Hamiltonian (5.13) cannot be closed and then extended to a self-adjoint 
operator. Despite all these difficulties, Thirring and Narnhofer have provided a novel 
suggestion as to how consistency might be regained. Namely, if (5.10) is to be a gluon 
field, then other interaction terms must be introduced, since the gluon field is not 
isolated. Just as in the case of the external field problem, in which a healthy free field 
develops instability when an interaction is introduced, a pathological free field may 
be stabilised by introducing an interaction. An initial exploratory model, in which 
the extra field is represented by a harmonic oscillator, has shown some success. Since 
a fully interacting Hamiltonian H may be decomposed into a ‘free’ term Ho of the 
form (5.13) and an interaction term, the S-operator may be defined from a counterpart 

and this can be unitary, even though the original Fock space has indefinite 
metric. The process of extracting a unitary S-matrix out of a pseudo-unitary dynamical 
system has recently been further developed by Demuth (1981). The sub-hadronic 
realm may yet prove to require strange mathematics in its description. 

of eiHf e-iH,,r 
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